
 
 

 

  

Abstract— Many studies of human postural control use data 
from video-captured discrete marker locations to analyze via 
complex inverse kinematic reconstruction the postural respon-
ses to a perturbation. We propose here that Principal Compo-
nent Analysis of this marker data provides a simpler way to get 
an overview of postural perturbation responses. Using short (1, 
4, and 16 mm) anterior platform step translations that are on 
the order of a young adult’s normal sway path length, we find 
that the low order eigenmodes (which we call eigenposes) of the 
time-series marker data correspond dominantly to a simple 
anterior-posterior pendular motion about the ankle, and 
secondarily (and with less energy) to hip flexion and extension.  
A third much weaker mode is occasionally seen that is repre-
sented by knee flexion.   

I. INTRODUCTION 
ntegration of motion capture devices into postural control 
experiments is essential for analysis of postural control 

dynamics because body configuration must be known. Using 
markers at key motion joints, we are able to accurately de-
scribe body configurations during testing of postural control 
response using SLIPFALLS-STEPm, a controlled sliding 
platform test setup with an associated motion analysis sys-
tem that tracks the motion of the markers in three dimen-
sional space using a multi-camera system [1,2].  However, 
even if only a small number (~ 20) of markers are tracked in 
3-D Euclidean space, the dynamic marker location data 
results in a 60-dimension time series. This high-dimensional 
data representation does not support analysis of postural 
control dynamics, except where complex inverse kinematics 
is employed with corresponding assumptions. 

These inverse kinematic calculations involved in postural 
stability and gait analyses require measurement of all appro-
priate limb segments and joint angles by intensive inverse 
computation of marker positions. These calculations, coup-
led with the force reactions of the feet with the platform on 
which a subject stands and anthropomorphic assumptions 
about the weight distributions in various body segments, are 
designed to yield joint torques and moments about each axis 
of rotation, and hence to discern reactions to perturbations. 

 
Manuscript received February 4, 2010. 
Research funds received from NIH R01 AG26553, VA Rehabilitation R&D 
#E2143PC, and a VA Senior Rehab Research Career Scientist Award.  

Dr. Robinson with the VA Med Center Research Service, Syracuse, NY; 
and the Center for Rehab. Engineering, Science and Technology, Clarkson 
Univ., Potsdam, NY.13699-5730 USA <c.robinson@ieee.org> 

 Drs. Skufca and Bollt are with Clarkson Univ’s Math and Computer 
Science Dept. <(jdskufca, bolltem)@clarkson.edu>. 

Mr. Pilkar is a PhD student in the Electrical and Computer Engineering 
Dept. at Clarkson University <pilkarrb@clarkson.edu>. 

The most used measure of reaction force is Center of 
Pressure or CoP, which is the vertical projection of the 
body’s center of mass (CoM) onto the supporting surface 
[3]. The CoP will change in response to a perturbation of the 
body in space or of the supporting platform. 

Our lab employs a novel way to assess postural stability. 
Rather than making large, potentially fall- initiating pertur-
bations, we make subtle translational perturbations that are 
at the edge of detectibility and that are buried within the 
range of a subject’s normal CoP sway path length (i.e., 2 
mm rms, 20 mm range). We use iterative psychophysical 
testing procedures to determine the just detectible level (i.e., 
threshold) of acceleration at short 1, 4, or 16 mm anterior 
horizontal platform translations. To analyze differences in 
perturbations that were correctly detected versus those that 
were not, we needed an analysis tool take could work within 
the low signal (i.e. perturbation response) to noise (i.e., nor-
mal sway) ratio inherent in our experiment.  

Thus, we wondered if it might be possible to take a sim-
pler first-look approach to understanding postural stability 
— not by intensive back-calculations — but by treating the 
marker locations themselves as providing rich information 
about system state. Since the state of any system can be 
described by its eigenvalues, we felt that the set of marker 
positions might decompose into a set of physiologically 
relevant eigen-states. We thus proposed two hypotheses: 

 H1:  The most appropriate state variable for postural  
control is body configuration,  approximated by measur-
ing the position of each rigid element.    

The generic ODE model is given by:  
(1) 

Center of pressure (COP) describes variables of state only 
under a static condition.  Dynamically, one should view 
COP as a mathematical projection of the body’s control 
signal.  Mathematically, we could then assume that: 

 ( 2) 
to indicate the functional relationship between the control 
(u) and its observable (COP).  

H2:  A subject's ability to detect short, near threshold 
platform motion is affected by the state of the configura-
tion variables at the time of movement.  In particular, a 
subject is less likely to perceive motion if the body is 
moving toward its natural equilibrium.  Part of a subject’s 
“sensation of movement” is based on detecting the neuro-
muscular control response that is automatically initiated to 
maintain balance.  If the body is moving toward equilibrium 
when the perturbation is inserted, less muscular action is 
required to maintain balance. 

Eigenposes: Using Principal Components to Describe Body 
Configuration for Analysis of Postural Control Dynamics   

Joseph D. Skufca, Erik M. Bollt, Rakesh Pilkar, Charles J. Robinson, Fellow IEEE 

I 



 
 

 

II. METHODS 
To perturb the subject’s base of support, we used a novel 

horizontal translating platform and data collection system 
called SLIP-FALLS-STEPm (for our Sliding Linear Investi-
gative Platform For Assessing Lower Limb Stability with 
Synced Tracking, EMG and Pressure measures) that has 
been described elsewhere [1,2]. The dynamics of the pertur-
bation can be completely specified by the investigator. More 
importantly, using a non-contact linear motor and air bearing 
slides eliminates any vibration, obviating a potential cue for 
movement. This highly-instrumented platform and its prec-
isely controlled selection of move distance, acceleration, and 
jerk are user-specified to tailor a set movement profile for 
these experiments. 

For determining detection threshold, we use a 2-Alterna-
tive-Forced-Choice (2AFC) procedure [3]. A subject stand-
ing blindfolded on the SLIP is instructed that a move will 
occur in one (and only one) of the two intervals. The con-
trolling computer replays the stored commands “Ready,” 
“One,” “Two,” “Decide,” with the stimulus presented in 
interval One or Two, each a 3 to 6 s interval of similar 
length needed to capture the full perturbation move. After 
the word “Decide,” the subject is required to make a forced 
choice and to press a handheld button once or twice to signal 
in which interval (s)he felt that the stimulus occurred. At 
each displacement tested (1, 4 and 16 mm), a series of 30 
trials are sequentially presented, and platform test accelera-
tion is iterated towards detection threshold.  

The FALLS-STEPm portion of the system collects time-
series measures of Anterior-Posterior and Left-Right Centers 
of Pressure, total subject weight, lower limb electromyo-
graphy, and the position of small (1 cm) retroreflective 
markers placed bilaterally over the major joints of the body. 
The 3-dimensional location of these markers in calibrated 
local-space coordinates is captured as a function of time via 
a 6-camera Vicon-Peak system running Nexus software. 
This paper considers the motion of these markers along the 
anterior-posterior axis. 

Even considering only a small number of markers, the 
resultant data provides a high-dimension representation of 
the body movement. It is likely to be highly redundant with 
respect to kinematic and dynamic information.  Principal 
Component Analysis (PCA) [also known as Proper Orthog-
onal Decomposition (POD) and the Karhunen-Loeve (KL) 
transform] uses an eigenvalue decomposition of the covari-
ance matrix to provide an optimal basis for data representa-
tion.  These techniques have been exploited in the field of 
partial differential equations (e.g., to study spatiotemporal 
turbulence). They allow for vast reduction in the dimen-
sionality of the representation of data and are popular within 
the field of data mining as a technique for factor reduction.  

We apply PCA to our marker data time series as follows:  
For each data trial, we form data matrix	  X,	  where each row is 
associated with a specific marker coordinate and each col-
umn to a specific time. Marker positions are sampled at 
250Hz.   

III. RESULTS 
For this paper, we consider only a limited set of markers 

and only for AP displacement.  Additionally, each row of � 
has been demeaned, such that the recorded values give devi-
ation from some mean configuration.  We use the standard 
singular value decomposition equation 

  (3) 
where columns of U can be viewed as providing body shape 
modes that we term eigenposes (see Fig. 1).   

This decomposition provides for a simplified approxima-
tion of the data by choosing modes associated to the largest 
singular values. We find that for our data sets, the leading 
two modes are typically sufficient to represent the data.  
Inclusion of the third mode ensures that we capture over 
99% of the information content.   

One typical weakness of PCA is that the eigenmodes are 
not easily interpreted with any physical relevance. While 
they may optimally explain the data variance, they often 
provide little insight into underlying processes.  However, 
for our problem, we find that the marker data provides a 
natural decomposition into the three key movements associ-
ated with a three-segment representation of the human body.  
The dominant mode (EP1) characterizes gross body motion 
as a rigid element rotating about the ankle. Mode EP2 cap-
tures a hip motion control strategy. And mode EP3 indicates 
a pronounced knee bend, seemingly balanced by head and 
arm motion. 

 
 
We can consider the data in the eigenmodes coordinates by 
simply apply a change of basis, such that  

  (4) 
yields the transformed representation.  For a typical trial, a 
small platform perturbation (relative to the mean sway path 
length amplitude) may modify the relative mode weights. 
But we observe that the primary motion modes are active in 
the pre-, peri-, and post-move environments (see Fig. 2). 
 

Fig. 1. Eigenposes EP1, 
EP2, and EP3, compared 
to the mean body position 
(in gray).  Markers anal-
yzed were located at heel, 
knee, hip, shoulder, head, 
elbow and wrist. 
 



 
 

 

 
Fig. 2 - Marker positions raw data (top) and decomposed to the EP basis 
(bottom) for a 16mm platform move at time t=10s.  Note that all informa-
tion from modes four and above is essentially "covered" by the thickness of 
the line drawn for mode EP3. 

IV. DISCUSSION AND CONCLUSION 
We find that most of the observed body motion in our 

experiments can be adequately approximated by using only a 
small number of eigenposes.  The principle mode essentially 
represents rigid body motion, pivoting at the ankle, while the 
second mode reflects motion at the hip joint, with arm and 
upper body motion suitable to maintain center of balance. 
Although these modes are found by mathematical optimiza-
tion of the energy representation (such that the fewest num-
ber of modes are required), the resulted eigenvalues seem to 
represent natural positions of the body. 

Because PCA is completely data dependent, it need not 
coincide with any physical model of the system that gener-
ated the data.  However, to the extent that such models can 
be developed, they provide credence to the implications of 
the PCA analysis.  Our eigenmodes of postural stance are 
consistent with the three-segment model of [4,5], where the 
segments are ideal joints, pinned at ankle, knee, and hip, and 
with torque actuators at each joint. In that idealization, the 
eigenmodes are the resultant linearized dynamics. That 
model was tested against data in [5], where the focus was on 
purposeful bending of the body while trying to maintain bal-
ance.  

Continued analysis of posited modal control schemes 
based on that model were examined in [6], supporting the 
idea of coexisting modes. These were further emphasized in 
[7]. Implementation of such control in a real human body (as 
compared to ideal model) may require some a fuzzy control-
ler. We note that the fuzzy model considered in [8] is consis-
tent with the modal description implied by the data analysis. 

We note that our marker also data captures information 
regarding the movement of the arms and head, which is not 
reflected in the three segment model.  However, the strong 
correspondence with the models indicates that a reasonable 
course of investigation should be pointed toward under-
standing how these balancing gestures may be essential con-
tributors to postural control.  Even in the quiet standing con-
dition, dominated by ankle control, we observe “bursting” of 
small EP3 behaviors.  Our intended direction is to modify 
fuzzy schemes such as [8] to account for these additional 
activations. 
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